Abstract

Increasing numbers of devices are emerging which involve biophotonic imaging on a mobile platform. Therefore, effective test methods are needed to ensure that these devices provide a high level of image quality. We have developed novel phantoms for performance assessment of near infrared fluorescence (NIRF) imaging devices. Resin molding and 3D printing techniques were applied for phantom fabrication. Comparisons between two imaging approaches – a CCD-based scientific camera and an NIR-enabled mobile phone – were made based on evaluation of the contrast transfer function and penetration depth. Optical properties of the phantoms were evaluated, including absorption and scattering spectra and fluorescence excitation-emission matrices. The potential viability of contrastenhanced biological NIRF imaging with a mobile phone is demonstrated, and color-channel-specific variations in image quality are documented. Our results provide evidence of the utility of novel phantom-based test methods for quantifying image quality in emerging NIRF devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.