Abstract

Information Centric Networking (ICN) advocates the philosophy of accessing the content independent of its location. Owing to this location independence in ICN, the routers en-route can be enabled to cache the content to serve the future requests for the same content locally. Several ICN architectures have been proposed in the literature along with various caching algorithms for caching and cache replacement at the routers en-route. The aim of this paper is to critically evaluate various caching policies using Named Data Networking (NDN), an ICN architecture proposed in literature. We have presented the performance comparison of different caching policies naming First In First Out (FIFO), Least Recently Used (LRU), and Universal Caching (UC) in two network models; Watts-Strogatz (WS) model (suitable for dense short link networks such as sensor networks) and Sprint topology (better suited for large Internet Service Provider (ISP) networks) using ndnSIM, an ns3 based discrete event simulator for NDN architecture. Our results indicate that UC outperforms other caching policies such as LRU and FIFO and makes UC a better alternative for both sensor networks and ISP networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.