Abstract

Botnet is regarded as one of the most sophisticated vulnerability threats nowadays. A large portion of network traffic is dominated by Botnets. Botnets are conglomeration of trade PCs (Bots) which are remotely controlled by their originator (BotMaster) under a Command and-Control (C&C) foundation. They are the keys to several Internet assaults like spams, Distributed Denial of Service Attacks (DDoS), rebate distortions, malwares and phishing. To over the problem of DDoS attack, various machine learning methods typically Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes (NB), Decision Tree (DT), and Unsupervised Learning (USML) (K-means, X-means etc.) were proposed. With the increasing popularity of Machine Learning in the field of Computer Security, it will be a remarkable accomplishment to carry out performance assessment of the machine learning methods given a common platform. This could assist developers in choosing a suitable method for their case studies and assist them in further research. This paper performed an experimental analysis of the machine learning methods for Botnet DDoS attack detection. The evaluation is done on the UNBS-NB 15 and KDD99 which are well-known publicity datasets for Botnet DDoS attack detection. Machine learning methods typically Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes (NB), Decision Tree (DT), and Unsupervised Learning (USML) are investigated for Accuracy, False Alarm Rate (FAR), Sensitivity, Specificity, False positive rate (FPR), AUC, and Matthews correlation coefficient (MCC) of datasets. Performance of KDD99 dataset has been experimentally shown to be better as compared to the UNBS-NB 15 dataset. This validation is significant in computer security and other related fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call