Abstract

The development of Internet Protocol version 6 (IPv6) came with a larger header size of 40-Byte compared with the 20-Byte of Internet Protocol version 4 (IPv4) which would have made IPv6 protocol a bottleneck in data transmission over the global network. Practically, given the same user data transmitted over the same physical-layer network medium in both IPv4-enabled and IPv6-enabled networks, the network speed would be slower in the IPv6 setup compared to the IPv4 scenario, but network bandwidth is optimized with the in-built header compression technique in IPv6 which makes it advantageous over IPv4 and being deployed in the recent Operating Systems and networking devices including switches and routers. This performance evaluation is focused on the effect of varying header sizes on a packet transmission by determining both maximum packet throughput and header overhead percentage. These metrics were determined after the simulation of the packet transmission in MatLab vR2021a. The results were then validated with a simple ping command in a Peer-to-Peer (P2P) network connection between two Windows 10 Computer Systems using Ethernet Category 6 cable. The output shows that despite the higher header size in IPv6, data transmission using the protocol is at faster rates, and this is due to the inherent header compression feature in IPv6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call