Abstract

This paper presents performance evaluation of a new distributed energy resource management system (DERMS) algorithm via an advanced hardware-in-the-loop (HIL) platform. The HIL platform provides realistic testing in a laboratory environment, including the accurate modeling of sub-transmission and distribution networks, the DERMS software controller, and 84 power hardware solar photovoltaic (PV) inverters, standard communication protocols, and a capacitor bank controller. The DERMS algorithm is also called, Grid-Optimization of Solar (GO-Solar) platform which includes predictive state estimation (PSE) and online multiple objective optimization (OMOO) to dispatch the legacy devices and distributed energy resources (e.g., PV). The voltage regulation performance is evaluated under three scenarios, volt-var smart inverter (baseline), and DERMS control for 100% and 30% of PV. The results show that controlling 30% of PV systems with the GO-Solar platform may provide the best balance of control performance and implementation cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.