Abstract
AbstractThere has been a limited application of liquid desiccant (LD) dehumidification systems in space air conditioning until now. The key elements responsible for this restricted implementation are leakage of desiccant solution, corrosion of components, and solution carryover along with the processed air to the space to be conditioned. To remove these problems, an evacuated tube solar heat collector‐driven multichannel liquid desiccant air conditioning system has been proposed and experimentally investigated. In this study, dehumidification and regeneration rate, their effectiveness, cooling effect of the dehumidifier, and indirect evaporative cooling unit have been analyzed. The results obtained indicate that the process air has been dehumidified and cooled by 6.32 g kg−1 and 5.26°C, respectively. The regeneration rate and effectiveness have been obtained to be 0.26 g s−1 and 0.31, respectively. In terms of the cooling effect, the system output of 0.703 and 0.130 kW has been obtained from the dehumidifier and indirect evaporative cooling unit of the system, respectively. The proposed system validates the possibility of the novel solar‐powered liquid desiccant air conditioning system concept and provides growth and development of the LD air conditioning technology for space air conditioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.