Abstract

In this paper, we present the experimental performance evaluations of a newly developed photoelectrochemical (PEC) reactor for the production of hydrogen under no-light and concentrated solar radiation conditions. With a newly developed experimental setup, the solar light is concentrated about ten times, and the spectrum is divided using cold mirrors for better sunlight utilization. The photoelectrochemical reactor is examined at different applied potentials and the hydrogen production quantities are measured. Copper oxide, which is used as a light-sensitive material, is electrochemically coated on the cathode metal plate to increase the rate of hydrogen evolution under illumination. The present experiments are conducted to investigate the variation of reactor performance with intensified light conditions and the obtained results are compared with the dark conditions. The results of this study reveal that the hydrogen evolution rate was 41.34 mg/h for concentrated light measurement and 34.73 mg/h for no-light measurements at 2.5 V applied potential. The corresponding photocurrent generated under concentrated light at 2.5 V is found to be 0.63 mA/cm2. Under the concentrated sunlight, the hydrogen production rates increase considerably which is led by the positive effect of the photocurrent contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.