Abstract
This work presents the evaluation results of a novel technique for word order errors correction, using non native English speakers' corpus. This technique, which is language independent, repairs word order errors in sentences using the probabilities of most typical trigrams and bigrams extracted from a large text corpus such as the British National Corpus (BNC). A good indicator of whether a person really knows a language is the ability to use the appropriate words in a sentence in correct word order. The scrambled words in a sentence produce a meaningless sentence. Most languages have a firly fixed word order. For non-native speakers and writers, word order errors are more frequent in English as a Second Language. These errors come from the student if he is translating (thinking in his/her native language and trying to translate it into English). For this reason, the experimentation task involves a test set of 50 sentences translated from Greek to English. The purpose of this experiment is to determine how the system performs on real data, produced by non native English speakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.