Abstract

In this research, a new hybrid system combining indirect evaporative cooler and underground air tunnels has been proposed as an eco-friendly alternative for vapor-compression cooling cycles. Indirect evaporative cooling is an efficient thermal comfort cooling method in arid and semi-arid climates. Due to global warming and limited water resources, managing and monitoring of water consumption in evaporative coolers are of particular importance in these regions. In the present study, the cooling efficiency and water consumption of the proposed novel hybrid system are evaluated theoretically. To this aim, a mathematical model was developed for simulating the cooling performance of indirect evaporative cooler and earth-air heat exchanger systems. The fully implicit finite difference scheme was employed in computations. The simulations were validated against some available experimental and numerical data and a good agreement was obtained. The effect of the design parameters of the underground pipe on pre-cooling performance was studied. The results showed that coupling the underground heat exchanger to an indirect evaporative cooler not only improved cooling performance but also significantly decreased water consumption. Besides maintaining the desired thermal comfort level, our investigation indicated that the proposed system can decrease energy and water consumption by about 62% and 45%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.