Abstract

A new hybrid system coupled an absorption heat transformer to a photovoltaic module is put forward to capture the sunlight transmitted through photovoltaic module for heat upgrading. Taking account of multiple irreversible losses within the hybrid system, mathematic expressions for performance indicators of photovoltaic module, absorption heat transformer and hybrid system are formulated. Whether the proposed hybrid system is effective or not is evaluated. The maximum power output density and maximum energy efficiency of hybrid system are, respectively, enhanced by 99.05% and 99.01% compared with that of stand-alone photovoltaic module. Moreover, comprehensive sensitivity analyses are conducted to study how the hybrid system is affected by various designing parameters and operating conditions. Numerical calculation results indicate that the operating temperature of photovoltaic module, diode ideality factor, solar irradiance and various heat-transfer coefficients of absorption heat transformer have positive influence on the hybrid system performance. However, the environment temperature and heated space temperature have negative influence on the hybrid system performance. Furthermore, a practical case study has been conducted to show the performance limits of such a hybrid system. The present study may offer some new insights into the photovoltaic module performance improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call