Abstract

We propose a low-cost and low-power consumption device for seismic monitoring consisting of three single-axis accelerometers connected to a data logger with acquisition, synchronization, and transmission functionalities. The device was designed to be densely and prolifically deployed in high seismic risk areas, thus strengthening the Italian seismic network and providing a more accurate estimation of shaking maps. Moreover, the availability of such low-cost and high-performance units can allow the widespread diffusion of smart systems for seismic and structural monitoring, finalized to collapses prevention in critical structures, such as schools and hospitals, as well as constitute the founding nucleus of early warning systems based on Internet of Things architectures. The realized station was submitted to a testing phase, placing it contiguously to a high-performance seismic station located in central Italy and responsible for national seismic monitoring. The test station, installed from September 2016 to March 2017, was able to record the significant and numerous earthquakes that devastated central Italy during this period. The simultaneous acquisition of these seismic events by the sensors of the national seismic network, including that co-sited with the device under test, has furnished sufficient data for the device validation and performance quantification. A comparative analysis was performed through waveforms correlations study, strong motion parameters estimation, and spectral analysis. The proposed device demonstrated performances very close to those of more sophisticated and expensive systems. Therefore, it can effectively replace them or be added in engineering and civil protection applications and, finally, be used in earthquake early warning systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.