Abstract

Stainless steel and titanium-based alloys have been the gold standard when it comes to permanent implants and magnesium-based alloys have been the best option for bioresorbable alloys. Ti-6Al-4V, Ti-64, with its 110 GPa Young’s Modulus is the most commonly employed alloy to manufacture biomedical implants used for treatment of fractures of skeleton. Recently, researchers have developed a new low-cost and toxic Vanadium-free alternative to this alloy, Ti-3Mo-0.5Fe at.%, namely TMF8. This alloy has a 25% lesser Young’s Modulus compared to Ti-6Al-4V and also demonstrated acceptable mechanical properties while possessing better cell proliferation results. The lower Young’s Modulus can aid in lowering stress shielding effects while its cytocompatibility could enhance healing. This work, therefore, tries to use finite element analyses to compare these two alloys (Ti-64 and TMF8) from a practical structural point of view to analyse the advantages and disadvantages of this new alloy and how a low-cost biocompatible alternative (TMF8) can actually prove to be a more viable option. The analyses confirm that TMF8 shows almost similar biomechanics performance to Ti-64 alloy (and in acceptable range) in bone plate fixation of mandibular angular fracture treatment.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.