Abstract

Thermal management system (TMS) of a power converter directly dictates the available power rating, power density, semiconductor module reliability, and its operating lifetime. For the latest-generation wide bandgap (WBG) semiconductor device-based converters, it is challenging to extract the generated heat from the devices due to smaller die area as compared to its silicon (Si) counterparts. In this paper, the thermal performance of a new loop thermosiphon-based TMS for silicon carbide (SiC) semiconductor device-based power conversion system is presented. The working principle and design of the TMS are shown, and the performance of the designed TMS in both transient and steady-state conditions of power dissipation is evaluated. Furthermore, an accurate thermoelectrical model of the TMS is presented, and the circuit parameters are quantified by experimental results. This analysis helps to estimate the device junction temperature in real time during converter operation. Moreover, detailed simulations are carried out with the derived TMS thermal model to evaluate its performance at low fundamental frequencies at rated currents. The experimental results and the simulation studies indicate that the TMS offers a low thermal resistance and can extract a large amount of heat without increasing the device junction temperatures beyond their rated values. Furthermore, the designed TMS is able to maintain the junction temperature ripples at low fundamental frequencies within small values, which helps to increase the lifetime of the power modules significantly, as compared to conventional heatsinks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.