Abstract

In the previous work, a single antenna interference cancellation (SAIC) algorithm named least mean square-blind joint maximum likelihood sequence estimation (LMS-BJMLSE) has been proposed. However, LMS-BJMLSE requires a long training sequence (TS) for channel estimation, which reduces the transmission efficiency. In another work, in order to solve this problem, a subcarrier identification and interpolation algorithm was proposed, in which the slowly converging subcarriers are identified by exploiting the correlation between the mean-square error (MSE) produced by LMS and the mean-square deviation (MSD) of the desired channel estimate. However, this correlation relationship was only found based on simulation results and no clear mathematical proof was given. The performance of the algorithm was only evaluated for the case of single interference. In this paper, the mathematical proof of the correlation relationship between MSE and MSD is given. Furthermore, we generalize LMS-BJMLSE from single antenna to receiver diversity, which is shown to provide a huge improvement over single antenna. The performance of LMS-BJMLSE is also evaluated for the case of dual interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.