Abstract

Polarization-multiplexing quadrature phase shift keying (PM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of the system using these formats varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper, we analyse the tolerance of PM-QPSK to linear and nonlinear optical impairments, including amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fibre Kerr nonlinearities. The simulation results show that RZ formats with a low-duty cycle have a higher tolerance to CD, PMD and intrachannel nonlinearities due to the reduction of pulse-to-pulse interaction. Conversely, the PM–NRZ-QPSK format has a higher spectral efficiency (SE) than other options and shows better tolerance to filtering distortion and CD in filterless networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call