Abstract
Polarization-multiplexing quadrature phase shift keying (PM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of the system using these formats varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper, we analyse the tolerance of PM-QPSK to linear and nonlinear optical impairments, including amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fibre Kerr nonlinearities. The simulation results show that RZ formats with a low-duty cycle have a higher tolerance to CD, PMD and intrachannel nonlinearities due to the reduction of pulse-to-pulse interaction. Conversely, the PM–NRZ-QPSK format has a higher spectral efficiency (SE) than other options and shows better tolerance to filtering distortion and CD in filterless networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.