Abstract

The main target of this research is a quantitative review of literature on global solar radiation (GSR) models available for different stations around the world. The statistical analysis of 400 existing sunshine-based GSR models on a horizontal surface is compared using 40-year meteorological data in the selected locations in Egypt. The measured data is divided into two sets. The first sub-data set from 1980 to 2019 was used to develop empirical correlation models between the monthly average daily global solar radiation fraction (H/H0) and the monthly average of desired meteorological parameters. The second sub-data set from 2015–2019 was used to validate and evaluate the derived models and correlations. The developed models were compared with each other and with the experimental data of the second subset based on the statistical error indicators such as RMSE, MBE, MABE, MPE, and correlation coefficient (R). The statistical test of the correlation, coefficient (R), for all models gives very good results (above 0.92). The smallest values of t-Test occur around the models (M 272, M 261, M 251, and M 238). The accuracy of each model is tested using ten different statistical indicator tests. The Global Performance Indicator (GPI) is used to rank the selected GSR models. According to the results, the Rietveld model (Model 272) has shown the best capability to predict the GSR on horizontal surfaces, followed by the Katiyar et al. model (Model 251) and the Aras et al. model (Model 261).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call