Abstract

A comprehensive mathematical model is presented that accurately estimates and predicts failure modes through the computations of heat rejection, temperature drop and lumen side pressure drop of the hollow fiber (HF) membrane-based NASA Spacesuit Water Membrane Evaporator (SWME). The model is based on mass and energy balances in terms of the physical properties of water and membrane transport properties. The mass flux of water vapor through the pores is calculated based on Knudsen diffusion with a membrane structure parameter that accounts for effective mean pore diameter, porosity, thickness, and tortuosity. Lumen-side convective heat transfer coefficients are calculated from laminar flow boundary layer theory using the Nusselt correlation. Lumen side pressure drop is estimated using the Hagen-Poiseuille equation. The coupled ordinary differential equations for mass flow rate, water temperature and lumen side pressure are solved simultaneously with the equations for mass flux and convective heat transfer to determine overall heat rejection, water temperature and lumen side pressure drop. A sensitivity analysis is performed to quantify the effect of input variability on SWME response and identify critical failure modes. The analysis includes the potential effect of organic and/or inorganic contaminants and foulants, partial pore entry due to hydrophilization, and other unexpected operational failures such as bursting or fiber damage. The model can be applied to other hollow fiber membrane-based applications such as low temperature separation and concentration of valuable biomolecules from solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.