Abstract
This paper presents an in-depth numerical and thermodynamic study of a two-stage, 2-bed silica gel/water adsorption system for simultaneous generation of cooling power and potable water. The system is air cooled where the ambient temperature remains constant at 36°C. The first part of this paper investigates the effect of cycle time, chilled water inlet and heat source temperature on system performance viz. specific cooling capacity (SCC), specific daily water production (SDWP) and coefficient of performance (COP). A significant outcome of this study is to show that decrease in heat source temperature not only reduces the specific throughput but also increases the optimum cycle time, whereas COP is relatively insensitive to such alterations. The second part of this paper discusses the estimation of the minimum desorption temperature from the simulated system throughput results as well as from fundamental thermodynamic analysis of a two-stage adsorption cycle. This thermodynamic analysis provides a theoretical limit for minimum desorption temperature and optimal inter-stage pressure for a two-stage adsorption cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.