Abstract

The term “Internet of Things” (IoT) refers to an architecture in which digital objects have identification, sensing, connectivity, and processing capabilities that allow them to connect with other devices as well as perform tasks on the internet. There are many applications of IoT, among which Vehicle Delay-Tolerant Networks (VDTNs) are one of the best known. This new generation of vehicular networks can be applied in a variety of circumstances. For example, it can be employed to make data connections possible in densely crowded cities and as well as in remote and sparsely populated places with weak connectivity. These environments are characterized by frequent network partitioning, inconsistent connectivity, considerable propagation delays, high error rates, and short contact duration. Most of these behaviours are due to node selfishness. This task is crucial because selfish behaviour by nodes may make other nodes hesitant to cooperate. Selfish nodes have significant negative impacts on the effectiveness and efficiency of the network as a whole. To solve these issues, cooperative strategies that motivate nodes to share their resources must be considered. Important contributions to cooperation for vehicular networks are presented in this article, which investigates the effects of six different cooperative techniques on network performance and makes corresponding suggestions for their use in IoT-based VDTNs. Across all simulations, our results show that the studied strategies are all able to increase overall network performance by improving throughput and packet delivery probability, which in turn reduces average packet delivery time, energy consumption, overhead ratio, and the number of packets dropped.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call