Abstract
Developing countries like India are rapidly transitioning from traditional energy sources to sustainable energy sources, due to the increase in demand and the depletion of fossil fuels. Grid-connected photovoltaic (PV) systems attract many investors, organizations, and institutions for deployment. This article studies and compares the performance evaluations of three 52-kW PV plants installed at an educational institution, SRMIST (SRM Institute of Science and Technology), in Tamil Nadu, India. This site receives an annual average temperature of 28.5°C and an average global horizontal irradiation of 160 kWh/m2/m. The prediction model for the 52-kW power plant is obtained using solar radiation, temperature, and wind speed. Linear regression model-based prediction equations are derived using the Minitab 16.2.1 software, and the results are compared with the real-time AC energy yield acquired from the three 52-kW plants for the year 2020. Furthermore, this 52-kW plant is designed using PVsyst V7.1.8 version software. The simulation results are compared with the energy yield from the plants in 2020 to identify the shortfall in the plant performance. The loss analysis for the plant is performed by obtaining the loss diagram from the PVsyst software. This study also proposes a methodology to study the commissioned PV plant's performance and determine the interaction between variables such as direct and diffused solar radiations, air temperature, and wind speed for forecasting hourly produced power. This article will motivate researchers to analyze installed power plants using modern technical tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.