Abstract

In the aerospace industry, the structures are subjected to significant loads and extreme conditions whilst being required to be lightweight and resilient. Metallic foams seem to meet these criteria. However, their usage in the aerospace applications are not as common as one would expect. To explore a potential application of foams, this study evaluates the performance of the foams of Ti-6Al-4V, a conventional material/alloy for aircraft engine fan blade applications performing numerical simulations. First, the mechanical properties of the Ti-6Al-4V alloy are calculated using the Mori–Tanaka mean-field homogenisation and finite element (FE) methods employing representative volume elements (RVE). Using those calculated material properties and the computer-aided design (CAD) model of a representative aircraft engine fan blade, the FE models are built. In these numerical models, the material properties and the rotational speed with the static aero-loads are selected as variables, whilst boundary conditions remain consistent to ensure a systematic investigation. Stress analysis and the prestressed modal analyses of the blades are performed, and the results are presented to discuss the impact of the void volume fraction of the alloy foams. This study reveals the complex nature of the mechanics of fan blades when made of foams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call