Abstract
We show how to compute inefficiency or performance scores when the distribution of the one-sided error component in Stochastic Frontier Models (SFMs) is unknown; and we do the same with Data Envelopment Analysis (DEA). Our procedure, which is based on the Fast Fourier Transform (FFT), utilizes the empirical characteristic function of the residuals in SFMs or efficiency scores in DEA. The new techniques perform well in Monte Carlo experiments and deliver reasonable results in an empirical application to large U.S. banks. In both cases, deconvolution of DEA scores with the FFT brings the results much closer to the inefficiency estimates from SFM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.