Abstract

This paper presents the modeling methodology and performance evaluation of the resonance-enhanced dual-buoy WEC (Wave Energy Converter) by HEM (hydrodynamic & electro-magnetic) fully-coupled-dynamics time-domain-simulation program. The numerical results are systematically compared with the authors’ 1/6-scale experiment. With a direct-drive linear generator, the WEC consists of dual floating cylinders and a moon-pool between the cylinders, which can utilize three resonance phenomena from moon-pool dynamics as well as heave motions of inner and outer buoys. The contact and friction between the two buoys observed in the experiment are also properly modeled in the time-domain simulation by the Coulomb-friction model. Moon-pool resonance peaks significantly exaggerated in linear potential theory are empirically adjusted through comparisons with measured values. A systematic comparative study between the simulations and experiments with and without PTO (power-take-off) is conducted, and the relative heave displacements/velocities and power outputs are well matched. Then, parametric studies are carried out with the simulation program to determine optimum generator parameters. The performance with various wave conditions is also assessed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call