Abstract

Active charge balancing is an approved technique to implement more energy-efficient and eco-friendly lithium-ion battery systems. The theoretical analysis presented in this paper provides a method to estimate the benefits of a cell-to-cell-type active charge balancing circuit in comparison to a passive balancing solution concerning energy savings and capacity gain. The calculation's variable parameters are the battery system configuration and the cell capacity distribution properties. Their validity is limited to applications with normally distributed cell capacities, limited maximum and minimum cell capacity and full cycle usage. The losses related to passive balancing in an nSmP battery system are calculated as well as the overall energy savings achievable with cell-to-cell based active balancing. The capacity gain factor of an actively balanced battery system related to a passive one is found to be in a range between 1.06 and 1.01 depending on the cell parameters and the system configuration. The derived formulas are verified by numeric simulations. Based on the results, several options are identified to increase the energy efficiency of conventional passive balancing systems. The findings can be used during the design process of new battery systems or to analyze and optimize any existing lithium-ion battery system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.