Abstract
The performance of doped fiber amplifiers can be enhanced significantly with the help of multi-stage pumping technique provided that various critical parameters of pumps including their optical power and wavelength are optimized. We report the performance enhancement of a ytterbium doped fiber amplifier (YDFA) for a 1.02–1.08 m spectral region with an optimized design based on a novel dual-stage in-band asymmetrical pumping scheme. By accurately adjusting the optical power and wavelength of pumps in both the stages, a record peak gain of around 62.5 dB and output power of 4.5 W are achieved for a signal wavelength of 1.0329 m at an optimized length of Ytterbium-doped silica fiber and optimized doping concentration of Yb. Moreover, a minimum noise figure (NF) of 4 dB is observed for a signal wavelength of 1.0329 m at the optimized parameters. Similarly, the effect of using high and low pump powers at the first and the second stage, respectively, on NF of the amplifier is also investigated at different values of signal powers. It is observed that the value of NF increases significantly by using high pump power at the first stage and low pump power at the second stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.