Abstract
In this paper, the performance improvement of 380-nm InGaN/AlGaN ultraviolet light-emitting diodes (UV-LEDs) is investigated by incorporating an undoped Al(In)GaN thin interlayer between the InGaN well and AlGaN barrier in multiquantum-well (MQW) active region. By inserting the graded-composition AlGaN and AlInGaN thin interlayers, the light output powers of UV-LEDs are significantly increased by 70% and 105% at 20 mA, respectively, as compared with the LED without the interlayer. Remarkable efficiency enhancement in the UV-LEDs with graded-composition AlGaN and AlInGaN interlayers is mainly attributed to the further improvement of the electron confinement and hole injection with more uniform distribution in the MQW active region. Besides, photoluminescence and atomic force microscope analyses indicate that the MQW quality can be enhanced by incorporating a graded-composition AlInGaN thin interlayer in the MQW active region of UV-LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.