Abstract

In this study, the enhancement of silicon solar cell photovoltaic performance by means of indium nanoparticles (In NPs) deposited on the TiO2 space layer and capped with an Al2O3 antireflective layer is demonstrated. The impressive performance enhancement is attributed to the plasmonic scattering of broadband light which occurs as a result of the Al2O3/In NPs/TiO2 antireflective coating (PARC) surface structure. The optical reflectance, photovoltaic current-voltage (I–V), external quantum efficiency (EQE), and photovoltaic performance as a function of the incident angles are measured and compared. The experimental results show that the reflectance decreases with increasing TiO2 thickness and that the lowest reflection point of the spectrum was red-shifted by the use of a PARC surface structure. EQE was significantly enhanced between 400 and 1050nm wavelengths and much high EQE of 85% were observed for the cell with In NPs embedded in the 65-nm Al2O3/20nm TiO2 layer structure. In comparison to a bare reference solar cell, an efficiency enhancement of 54.47% (from 10.96% to 16.93%) and a short-circuit current density enhancement of 52.83% (from 26.10 to 39.89mA/cm2) were obtained for the cell with a 65-nm Al2O3/In NPs/20-nm TiO2 antireflection structure under normal incident illumination. In addition, for incident angles from 0° to 15°, the 0.78% decrease in conversion efficiency (from 16.71% to 16.58%) of the cell with the PARC surface structure was less than the 3.28% (from 13.86% to 13.49%) decrease of the cell with 65-nm Al2O3/20-nm TiO2 double layer antireflective coating (DL-ARC) due to the plasmonic scattering of broadband light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.