Abstract

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is widely used in optoelectronic devices due to its excellent hole current conductivity and suitable work function. However, imbalanced carrier injection in the PEDOT:PSS layer impedes obtaining high-performance perovskite light-emitting diodes (PeLEDs). In this work, a novel poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))diphenylamine)] (TFB) is applied as the hole transport layers (HTLs) to facilitate the hole injection with cascade-like energy alignment between PEDOT:PSS and methylammonium lead tribromide (MAPbBr3) film. Our results indicate that the introduced TFB layer did not affect the surface morphology or lead to any additional surface defects of the perovskite film. Consequently, the optimal PeLEDs with TFB HTLs show a maximum current efficiency and external quantum efficiency (EQE) of 21.26 cd A-1 and 6.68%, respectively. Such EQE is 2.5 times higher than that of the control devices without TFB layers. This work provides a facile and robust route to optimize the device structure and improve the performance of PeLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.