Abstract

The performance of moment generating function approaches, specifically Chernoff bound (CB) and modified Chernoff bound (MCB), is examined and improved in this study. We evaluates and enhances the performance of a wavelength division multiplexing (WDM) technique for free-space optical (FSO) fibre communications based on passive optical network (PON) using the M-ary digital pulse-position modulation (M-ary DPPM) schemes under amplified spontaneous emission (ASE) noise effects, interchannel crosstalk (ICC), and atmospheric turbulence (AT). We use a data rate of 2.5 Gbps for eight channels over a PON/DWDM-FSO optical fibre system in the C-band with 100 GHz channel spacing start from 1550 nm. The results achieve 20 Gbit/s transmissions (2.5 Gbps $$\times $$ 8 channels). This is a technology that can have extended leverage, higher data rates, power-efficient, and is considered an ideal option for the provision of bandwidth for potential access networks. When compared to the CB at a low gain (G = 8), the MCB outperforms the Gaussian approximation at high gain (G = 30). Because of its superior performance at a high gain (G = 30), the MCB offers the tightest limit on the bit error rate (BER). In comparison to an equivalent on–off keying (OOK) non-return-to-zero (NRZ), the M-ary DPPM scheme with a coding level (M) of 2 improves average power about by 2.9 dB at a data rate of 2.5 Gbps on the 1550 nm wavelength and BER of $${10}^{-{9}}$$ . The sensitivity of the M-ary DPPM modulation scheme remains improved over OOK in the presence of ICC. The lower power penalty is predicted to be approximately 0.2–3.0 dB in the DWDM-FSO systems for low coding level M $$=$$ 2. We achieve a lower power penalty at 0.2–3.0 dB for the hybrid fiber DWDM/PON-FSO optical communication system at a BER of $${10}^{-{9}}$$ . At a target BER of $${10}^{-{12}}$$ , the hybrid OOK-NRZ/M-ary DPPM offers about 4–8 dB of optical signal-to-noise-ratio improvements over the M-DPPM of the WDM-PON/FSO link for strong turbulence. The results demonstrated that the M-ary DPPM and the optical relaying amplification technique are powerful treatments for mitigating the impacts of ASE noise, AT, and ICC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call