Abstract

Abstract In this paper, we investigate the performance of a high-altitude platform (HAP)-based relaying free-space optical communication (FSO) system, where HAP plays a role as a relay node that employs detect-and-forward relaying scheme to connect between two ground stations (GSs). M $M$ -ary pulse-position modulation (PPM), spatial diversity, and heterodyne detection receiver are used to improve the system’s performance. Instead of using multiple-input multiple-output (MIMO), which makes the HAP complex, multiple-input single-output (MISO) is applied to the uplink while single-input multiple-output (SIMO) is utilized for the downlink. Consequently, the HAP only needs a couple of transmit and receive aperture. The expression for the bit error rate (BER) of the proposed FSO system is derived considering the impact of atmospheric attenuation and turbulence. The achievable BER with low values has proved the feasibility of our proposed system. In addition, the advantages of using M $M$ -PPM, spatial diversity, and heterodyne detection are demonstrated in terms of the power gain and the geometric distance between two GSs. Other useful information for system design regarding the required transmitted power, the number of transmit/receive apertures, the modulation level, and the local oscillator power is also provided in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.