Abstract

The autocorrelation receiver (AcR) is a suboptimum, low-complexity receiver architecture particularly suited to ultra-wideband (UWB) communication systems. As the bit rate increases, interference among pulses due to multipath propagation causes serious impairments of the AcR's performance. To mitigate this effect, we propose an appropriate design of the chip code and of the delay hopping (DH) code. We provide conditions to be satisfied by the DH code in order to reduce the nonlinear intersymbol interference (ISI) and the bias term, which are peculiar nuisance parameters of autocorrelation receivers. By extending the length of the chip code, we show that N/sub p/ transmitted pulses per symbol can be employed to suppress the average linear ISI of N/sub p/-1 previous symbols. Simulated results confirm the performance improvement in terms of bit-error rate. However, in previous work it has been shown that the noise power linearly increases with N/sub p/. Although a large number of pulses per symbol is favorable for ISI mitigation, we show that the transmission of a single pulse minimizes the probability of error, for bit rates lower than an upper bound depending on the channel root mean-square delay spread and on the noise power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.