Abstract

The characteristics of the nitride-based blue light-emitting diode (LED) by using special designed n and p-type doped barriers have been analyzed numerically in this paper. The internal quantum efficiency (IQE), carrier concentrations in the quantum wells (QWs), energy band diagrams, emission spectra and electrostatic fields are investigated. The simulation results indicate that the proposed LED by using the special designed n and p-type doped barriers has a strong enhancement in the optical output power. The improved performance is mainly attributed to the change of electrical field in the active region, resulting in superior electron confinement and improved hole injection efficiency. Further simulation results also indicate that the proposed LED without the p-AlGaN EBL possesses much better hole uniformity, which is due to the reversed electrostatic field in the last barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.