Abstract

We study the electron transport in armchair graphene nanoribbon (AGNR) resonant tunneling diode (RTD) using square and V-shaped potential well profiles. We use non-equilibrium Green’s function formalism to analyze the transmission and I–V characteristics. Results show that an enhancement in the peak current (I p ) can be obtained by reducing the well width (W w ) or barrier width (W b ). As W w decreases, I p shifts to a higher peak voltage (V p ), while there is almost no change in V p with decreasing W b . It is gratifying to note that there is an enhancement in I p by about 1.6 times for a V-shaped well over a square well. Furthermore, in the case of a V-shaped well, the negative differential resistance occurs in a shorter voltage range, which may beneficial for ultra-fast switching and high-frequency signal generation. Our work anticipates the suitability of graphene having better design flexibility, to develop ideally 2D RTDs for use in ultra-dense nano-electronic circuits and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.