Abstract
The increase in performance resulting from optimization of the magnetic field in a low-power magnetically shielded Hall thruster is investigated. The magnetic circuit of the MaSMi-60 Hall thruster was modified to improve the magnetic field topology while increasing the strength of the field across the discharge channel gap. Direct thrust measurements were then taken to assess the changes to thruster efficiency, thrust, and specific impulse. The MaSMi-60's total efficiency increased by nearly 30% as a result of the improved magnetic field, resulting in a peak value of 32.1% (38.6% anode efficiency). Peak thrust and total specific impulse values of 35.8 mN and 1,440 s (1,550 s anode specific impulse) were observed. To demonstrate the thruster's enabling capabilities when paired with a smallsat-class spacecraft, three example mission trajectories to 118401 LINEAR, an icy asteroid-belt comet, were calculated. For each trajectory, the MaSMi-60's experimentally demonstrated performance was used for the throttling table inputs. The trajectory solutions show a delivered mass fraction of between 35-49% for an initial spacecraft mass of up to 350 kg, a solar array power of up to 2.0 kW, and a total transfer time of ~6.5 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.