Abstract

An eco-friendly strategy for mariculture wastewater treatment using an electric field attached membrane bioreactor (E-MBR) was evaluated and compared with a conventional membrane bioreactor (C-MBR). The removal efficiencies of total nitrogen (TN) and chemical oxygen demand (COD) increased significantly and the membrane fouling rate reduced by 44.8% in the E-MBR. The underlying mechanisms included the enriched nitrifiers and denitrifiers, the enhanced salinity-resistance, the increased activities and upregulated genes of key enzymes involved in nitrification and denitrification for improving the performance of mariculture wastewater treatment, and the enriched extracellular polymeric substance (EPS)-degrading genera, the downregulated EPS biosynthesis genes, the repressed biofilm-forming bacteria, the enhanced zeta potential absolute value and the generated H2O2 for membrane fouling mitigation by electrical stimulation. Compared with the C-MBR, the energy consumption, carbon emissions, and nitrogen footprint were reduced. These findings provide novel insights into mariculture wastewater treatment using an applied electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.