Abstract

The performance enhancement of inverted polymer solar cells (PSCs), based on the blend system of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methylester, due to incorporating ultrathin Au and LiF interlayer between the front transparent indium tin oxide and a ZnO electron transporting layer was analyzed. The results reveal that a 40% increase in PCE, e.g., from 2.62% to 3.67%, was observed for PSCs made with an optimal Au/LiF interlayer as compared to the one having a bare ZnO electron transporting layer. The presence of Au/LiF-modified ZnO interlayer between ITO and the organic layer helps to improve the charge collection. The absorption enhancement arising from the plasmon resonance of Au nanostructures also contributed to the improvement in PCE. It is shown that PSCs with LiF incorporated ZnO electron transporting layer allow improving cell lifetime, demonstrating <50% decrease in PCE compared to that of the ones with a bare ZnO interlayer after 240day aging test for cells without encapsulation in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call