Abstract

Latent-heat thermal energy storage (LHTES) based on phase change materials (PCMs) is an effective way to alleviate instantaneous high-power refrigeration loads. However, the low charge/discharge rate of LHTES is a significant challenge that negatively affects its overall performance. Herein, we demonstrate a strategy to enhance the thermal-response rate of LHTES by improving the heat transfer inside the channel fluid through PCM-nanoemulsions. The effects of the nanoemulsion content and flowrate on energy discharge performance were investigated. The heat-transfer mechanism of the nanoemulsions was investigated using simulations. The results show the nanoemulsions can accelerate the discharge rate of LHTES with a reduction of discharge time by 11.4%. The enhanced heat transfer of LHTES was attributed to a new type of dual-phase-change heat-transfer mode. This mode is characterized by a substantial temperature difference that results from the phase-change thermostatic properties of both the nanoemulsions and PCMs, promoting a higher rate of energy release. Briefly, this study provides novel insights into accelerating the heat-transfer rate of LHTES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call