Abstract

Almost all of the complex dynamic processes are subjected to non-Gaussian random noises which leads to the performance deterioration of Kalman filter and Extended Kalman filter (EKF). To enhance the filtering performance, this paper presents an EKF-based filtering algorithm using minimum entropy criterion for a class of stochastic non-linear systems subjected to non-Gaussian noises. For practical implementations, the Kalman filters are widely used and the structure will not be changed due to the system integration, therefore, it is important to enhance the performance without changing the existing system design. In particular, a compensative framework has been developed where the EKF design meets the basic filtering requirements and the polynomial-based non-linear compensation has been used to adjusted the basic estimation from EKF with the entropy criterion. Since the entropy of the system output estimation error can be approximated using the measured data by kernel density estimation (KDE). A data-based framework can be obtained to enhance the performance. In addition, the presented algorithm is analysed from the view of the estimation convergence and a numerical example has been given to demonstrate the effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.