Abstract

This paper deals with the development of compound parabolic collectors (CPCs), utilizing a partial glass sheet adjacent to the absorber plate for the purpose of performance improvement. The collector under study has a parabolic shape, whose cavity is filled with air and the turbulent natural convection takes place because of the air density gradient. The main goal is the reduction of heat losses by keeping away the high-temperature region near to the absorber from the main recirculaetd convection airflow by installation of a separating glass sheet. The conservations of mass, momentum and energy as the set of governing equations for the steady and turbulent free convection airflow in the CPC’s cavity and the Laplace equation for computation of temperature distributions in solid parts including the glass cover, absorber plate, and glass sheet were numerically solved by the finite element method. The COMSOL Multiphysics software was used for the present simulation. For the computation of turbulent stress and heat flux, the κ-ε turbulence model was employed. An attempt was made to investigate the installation of a fully transparent glass sheet near the absorber plate on the thermal behavior of the studied CPC. It is expected that this factor leads to lowering the heat losses from boundary surfaces, especially from the glass cover. Numerical findings showed about a 24% increase in the efficiency of studied test cases because of the installed glass sheet. Comparison between the theoretical findings with experiment shows good consistency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.