Abstract
The transportation industry is increasingly focused on hydrogen based fuel as a promising alternative due to its potential for reduced emissions and enhanced performance. The purpose of this study is to improve efficiency and reduce emissions on low speed on different loads for heavy duty vehicles. This study can be impactful to train the electronic control unit (ECU) for heavy duty vehicles working on aforementioned conditions. This study investigates the effect of hydrogen ratios (0%–40 %) in HCNG, (0%–15 %) exhaust gas recirculation (EGR) ratios, and spark timing (8°-34o CA bTDC) at low and high loads (15 % & 75 %) under stoichiometric conditions at low speed (700 rpm). Performance, emissions and combustion parameters were thoroughly analysed across these conditions. Brake thermal efficiency increases by 20.7 % & 19.4 % by the addition of (0 %–40 %) hydrogen at low and high load at 14o CA bTDC running on 5 % and 0 % EGR respectively. NOx emissions reduces by 11.9 % & 17.9 % by the addition of (0 %–15 %) EGR and increases by 46.1 % & 46.4 % by increasing the amount of hydrogen in HCNG at low and high load at 14o CA bTDC at 0 % EGR respectively. Coefficient of variation reduces 13.8 % by (0 %–40 %) hydrogen addition at 11 % EGR at 16o CA bTDC. Optimized Gaussian process regression (GPR) and neural network (NN) machine learning techniques were applied to the dataset, and found GPR matern 5/2 is best one. The findings can be utilized in the development of HCNG engine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.