Abstract

This work deals with assessing the performance of lignin nanoparticles (LNPs) in solving the problem of using salicylic acid as an agrochemical compound, via controlling its release. LNPs, obtained from black liquor, have been used to develop new delivery systems. Gels from chelating of LNPs with chitosan or chitosan nanoparticles (Cs-NPs) in presence or absence of cationic starch are investigated to achieve this essential aim. The nanoparticles are examined by TEM, ATR-FTIR, and XRD techniques. Based on measurements of swelling, encapsulation, release profile, release kinetic modeling of salicylic acid (SA), infrared spectroscopy, thermo-gravimetric analysis and scanning electron microscope the behavior of the investigated nanocomposite gels is assessed. The results show that the SA release profile of Cs-NPs and its nanocomposite with LNPs in phosphate-buffered saline (PBS) (7.4) (51.5–69.4 %) is higher than that of the mixture of water and ethanol (34.9–50.4 %). The release profile in PBS (7.4) demonstrates a trend of prolonged SA release over a 48-hour period. Best control of the SA-release can be achieved by CsNPs-LNPs nanocomposite. Comparing the results with previous literature demonstrates the promising characteristics of these examined gel nanocomposites. The release of SA from nanocomposites is regulated by a diffusion mechanism and follows the Ritger-Peppas and Higuchi models for kinetic release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.