Abstract

The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system’s performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.