Abstract

The closed-loop design experiment described in this paper demonstrates a three-phase automated design approach to pattern recognition. The experiment generates morphological feature detectors and then uses a novel application of genetic algorithms to select cooperative sets of features to pass to a neural net classifier. The self-organizing hybrid learning approach embodied in this closed-loop design methodology is complementary to conventional artificial intelligence (AI) expert systems that utilize rule-based approaches and a specific set of design elements. This experiment is part of a study directed to emulating the nondirected processes of biological evolution. The approach we discuss is semiautomatic in that initialization of computer programs requires human experience and expertise to select representations, develop search strategies, choose performance measures, and devise resource-allocation strategies. The hope is that these tasks will become easier with experience and will provide the means to ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.