Abstract
In the steam turbine, solid particle erosion on a nozzle cascade is known to damage the profile and surface smoothness of the cascade, which increases the flow loss of steam. The present study aims to make clear the relations between nozzle loss and surface degradation, aerodynamic parameters, as well as the shape, location, and size of the erosion notch. A series of numerical simulations were conducted to model the aerodynamic performance of various existing eroded nozzles. The results indicate that the nozzle loss caused by the surface degradation shows an approximate linear decrease with an increase in notch depth. The nozzle loss caused by the erosion notch increases with either a decrease in the exit Mach number or an increase of the notch area. For the same erosion-induced weight loss of the nozzle, the asymmetric notch and local notch cause more nozzle loss than the symmetric notch and quasi-global notch. This means that the performance deterioration can be reduced to a minimum value if the erosion is uniform along the span-wise of the nozzle. In addition, a combined experimental and numerical investigation is conducted to explore the erosion damage process of the nozzle. The result suggests that the eroded nozzle should be replaced by a new nozzle before the notch begins to propagate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.