Abstract

Objectives: In this paper, we aim to compare four different vesselness filters and propose a framework for segmenting coronary arteries from 2D angiograms with the aim of extracting accurate centerlines. Methods/Statistical analysis: Performance measures including noise suppression, edge smoothness, branch disconnection and centerline smoothness are used for comparing the performance of vesselness functions. Moreover, we have performed the segmentation of coronary arteries from the obtained vesselness measure using globalized region based active contour followed by median filtering to remove the artifacts such as unsmoothed edges. Findings: The study reveals that Frangi’s vesselness performs well in suppressing the background noise, whereas, the other vesselness measures perform better at enhancing vessels throughout crossings and bifurcations. Except Frangi’s vesselness, edges obtained by all the compared vesselness measure are prone to uneven and rough edges that will eventually lead to the extraction of wrong centerlines. Application/Improvements: Based on the findings, we have presented a segmentation method that produces more enhanced and smooth edges of coronary arteries and leads to the extraction of the smooth centerlines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.