Abstract
Nonlinear regression models are commonly used in various fields such as toxicology/pharmacology. When analyzing data using a nonlinear regression model the structure of error variance plays a key role in the estimation of parameters. Particularly, when data do not satisfy the homoscedasticity assumption, it is important to use an appropriate estimation method. In this paper, a robust M-estimation method against potential outliers in nonlinear regression under heteroscedasticity is considered. Under the heteroscedasticity assumption, three variance models are considered, and a weighted M-estimator is studied by the simulation to compare the performance of the estimator with three variance models. From the results of the simulation studies, even though not as well as proper estimators, WME using a nonlinear variance model generally shows good performances for homoscedastic data and heteroscedastic data with the variance models. The methods are also illustrated by analyzing real toxicological data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Data And Information Science Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.