Abstract

<strong>The mathematical approach calculus of variation is commonly used to find an unknown function that minimizes or maximizes the functional. </strong><strong>Retrieving the original image from the degraded one, such problems are called inverse problems. The most basic example for inverse problem is image denoising. Variational methods are formulated as optimization problems and provides a good solution to image denoising. Three such variational methods Tikhonov model, ROF model and Total Variation-L1 model for image denoising are studied and implemented. Performance of these variational algorithms are analyzed for different values of regularization parameter. It is found that small value of regularization parameter causes better noise removal whereas large value of regularization parameter preserves well sharp edges. The Euler’s Lagrangian equation corresponding to an energy functional used in variational methods is solved using </strong><strong>gradient descent method and the resulting partial differential equation is solved using Euler’s forward finite difference method. </strong><strong>The quality metrics are computed and the results are compared in this paper.</strong> <p class='IJASEITAbtract'>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.