Abstract

Two standing-wave thermoacoustic engines with a constant-diameter resonant tube and a tapered one, respectively, are simulated with linear thermoacoustics to explore the reasons for performance improvement of the thermoacoustic engine with the tapered resonant tube substituting for the constant-diameter one. Computed results indicate that the viscous loss in the tapered resonant tube is much lower than that in the constant-diameter one, and the smooth joint between the tapered resonant tube and its resonant cavity may avoid the acoustic power loss derived from sharp variation of flow area. The comparison between the computed results and the experimental data indicates that the simulation can roughly predict the performance of thermoacoustic engines with these two types of resonant tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.