Abstract
Youtube is a video sharing site that was begun back in 2005. Youtube produces over 400 hours of substance each moment and more than 1 billion hours of substance are devoured by clients every day. In this work, we present a new approach by comparing the analysis results using a support vector machine and the Gaussian Naive Bayes classificatio. Our proposed methodology We used the dataset from UCI especially Youtube-Shakira for training and testing. The transformed dataset is split into training and testing subsets and fed into Naive Bayes and Support Vector Machin. In all cases, the F1 score was used to evaluate the classifier's performance. The results of the experiment are displayed in Gaussian Naive Bayes with an F1 score of 84.38% and a Support Vector Machine (SVM) with an F1 score of 88.00%. Naive Bayes is consistently the worst performer than SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.