Abstract

By means of analytical and numerical methods, we derive the bit error rate (BER) of /spl pi//4-DQPSK systems in frequency-selective fading channels. For a theoretical analysis of the system, a simplified two-ray channel model has been used. However, both Rayleigh and lognormal distributions for the ray envelope have been considered. The system performance in the presence of antenna diversity and in combination with a new nonlinear equalizer has been evaluated. In particular, it is seen that in flat fading environments, space diversity may improve the performance by more than 10 dB at a BER=10/sup -3/. However, for channels with a large delay spread, nonlinear intersymbol interference (ISI) is the predominant disturbance, and the performance can only be enhanced by the nonlinear equalizer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.